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Abstract—1,1,1-Trihaloalkanes of the types R–CCl2I, R–CClBrI, and R–CBr2I belonging to 1,1,1-trihalo-1-deoxy-DD-arabinitol
series of alditols were prepared and fully characterized by anomeric alkoxyl radical fragmentation of the corresponding 2,2-dihalo-
2-deoxy-DD-arabino-hexopyranose derivatives. The analogous diiodohalo compounds R–CClI2 and R–CBrI2 could not be prepared
by this methodology. The results strongly suggest that the stability of the mixed trihalo alditols decreases with increasing bulkiness
of the halogen atoms.
� 2005 Elsevier Ltd. All rights reserved.
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1,1-Dihalo-alkanes and alkenes have now attracted
much interest for their role as important intermediates
in organic synthesis, for example, in the reactions of
Takai and Corey or in the sp2–sp2 coupling via de
formation of vinyl halides.1 In contrast, the chemistry
of trihalides, especially mixed 1,1,1-trihalo-alkanes of
the types R–CXYZ and R–CXY2, has comparatively
received much less attention.2 This is somewhat surpris-
ing given that most of the mixed trihalomethane com-
pounds CHXYZ and CHXY2 have been prepared and
characterized.2,3 Some studies on the absolute configura-
tion of bromochlorofluoromethane, one of the simplest
chiral molecules, are worth highlighting.4 As another
point of interest, polyhalogenated carbons have been
uncovered in a growing number of naturally occurring
compounds, that in recent years have assumed an
important role in natural products and environmental
chemistry.5

A careful search revealed, to our surprise, that very little
information about the preparation and properties of five
nonfluorinated systems of the R–CBrIX and R–CClIX
types (R = alkyl, X = Cl, Br, I) is available in the open
literature.6 Indeed, with the exception of R–CCl2I,
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compounds belonging to the other four systems are hith-
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erto practically unknown. Although some reports
claimed the formation of a very few compounds belong-
ing to the R–CIBr2,

6b R–CClBrI,6c R–CClI2,
6d and none

for R–CBrI2
6e systems, in some cases, they were ob-

tained as byproducts and in general have been poorly
characterized. This may be attributable to the incompat-
ibility between the low stability of these compounds and
to the relatively hard conditions required for the meth-
odologies reported up to now.

Earlier research from our laboratory has shown the fac-
ile formation of mixed 1,1,1-fluoroiodohalo alditols by
reaction of appropriate 2-deoxy-dihalohydrins from car-
bohydrates with hypervalent iodine reagents in the pres-
ence of iodine through an alkoxyl radical fragmentation
(ARF) (Scheme 1).7 The necessary 2-deoxy-dihalohyd-
rins (2 and 3) were prepared by halohydroxylation of
3 X = Br 5 X = Br

Scheme 1. Reagent and conditions: (a) F–TEDA–BF4 (Selectfluor),
CH3NO2/H2O (4:1), rt, 14 h and then refluxed 30 min; (b) NBA, THF/
H2O (10:1), rt, 1 h. ARF = alkoxyl radical fragmentation reaction.
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Table 1. Synthesis of nonfluorinated 1,1,1-trihalo-alditols
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Entry X Reagenta X Y Yield (%) Methodb X Y Yieldc (%)

1 6 Br a 8 Br Cl 79 B 13 Br Cl 65
2 6 Br b 9 Br Br 85 A 14 Br Br 65d

3 7 Cl a 10 Cl Cl 69 A 15 Cl Cl 69
4 6 Br c 11 Br I 87 A, B 16 Br I —
5 7 Cl c 12 Cl I 84 A, B 17 Cl I —

a (a) NCS, THF/H2O, reflux, 2–4 h; (b) NBA, THF/H2O, rt, 1 h; (c) NIS, THF/H2O, rt, 14 h.
b The ARF reactions were performed in dry CH2Cl2 (50 mL/mmol) containing (diacetoxyiodo)benzene (DIB) (1.5 mmol) and iodine (1 mmol)
per mmol of substrate under two different conditions: Method A, by irradiation with two 80 W tungsten-filament lamps at reflux temperature for
1 h, and method B, by heating at reflux temperature with complete exclusion of light for 1 h. Overexposure to light or heat was avoided during all
the purification step.

c Isolated yield.
d 2,3,5-Tri-O-acetyl-1,1,1-tribromo-1-deoxy-4-O-formyl-DD-arabinitol (18) 8% was also obtained.
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readily accessible 2-deoxy-2-fluoro-hex-1-enitol 1.8 This
protocol works extremely well for the preparation of
relatively stable systems of the R–CFHal2 type, and a
number of 1,1-difluoro-1-iodo- 4 and 1-bromo-1-fluoro-
1-iodo-alditols 5 have been synthesized.9

The mildness of the reaction conditions and the high
functional group tolerance observed encouraged us to
extend this methodology to the preparation of the less
stable 1,1,1-trihaloalkanes possessing heavier halogens
commented above. Nonfluorinated systems of the type
R–CBrIX and R–CClIX (R = alkyl, X = Cl, Br, I; five
compounds in total) were selected.

The synthesis is outlined in the scheme of Table 1.
2-Deoxy-2-bromo-hex-1-enitol derivative 6 has been
prepared as previously described from 3,4,6-tri-O-acet-
yl-2-deoxy-hex-1-enitol (tri-O-acetyl-DD-glucal).10 Not-
withstanding, 2-deoxy-2-chloro-hex-1-enitol 7 has been
synthesized previously only by chlorination of tri-O-acet-
yl-DD-glucal, and subsequent dehydrohalogenation of
the chlorine atom at C-1.11 Alternatively, 7 was pre-
pared by using a more convenient method, that avoided
the chlorination step and that essentially follows the
route utilized for the synthesis of 6 (see Supplementary
data).

Three of the required 2,2-dihalohydrins 8, 9, and 11
were prepared by reaction of 2-deoxy-2-bromo-hex-1-
enitol 6, respectively, with NCS, N-bromoacetamide
(NBA), and NIS in THF/H2O (Table 1, entries 1, 2,
and 4). A similar methodology has been successfully
applied to 2-deoxy-2-chloro-hex-1-enitol 7 to give the
other two 2,2-dihalohydrins 10 and 12 (Table 1, entries
3 and 5). Apart from 2,2-dichloro-2-deoxy-DD-arabino-
hexopyranose 10, the other 2,2-dihalohydrins have not
been previously described.11

The ARF reactions were accomplished as stated in
Table 1, with (diacetoxyiodo)benzene and iodine in
CH2Cl2, either photochemically by irradiation with
two 80 W tungsten-filament lamps at reflux temperature
(Method A), or thermally by heating at reflux tempera-
ture under complete exclusion of light (Method B). Only
the experiments giving the best yield of the expected tri-
haloalditol are shown in Table 1. The results summa-
rized as entries 1–3 showed that these reactions
proceeded smoothly for dihalohydrins 8–10 to afford
the corresponding 1,1,1-trihalocompounds 13–15. On
the contrary, the reaction of haloiodohydrins 11 and
12 fails completely since not even traces of the expected
diiodobromo 16 and diiodochloro 17 were detected un-
der either photochemical or thermal conditions (entries
4 and 5), only decomposition products being obtained
(vide infra). The structures of compounds 13–15 were
confirmed by 1H NMR and 13C NMR spectroscopy
including DEPT, COSY, HMQC, and HMBC experi-
ments. Special attention was devoted to the isotope pat-
tern of the molecular ion in the MS spectra, that in all
cases matched those calculated. Compounds 13–15 can
be purified by column chromatography and stored in a
refrigerator (�20 �C) in the dark for a short period of
time but decomposed rapidly under irradiation with
ambient light.12

The products obtained during the ARF of 11 and 12 de-
serve a brief comment (Scheme 2). The 1,1,1-tribromo
alditol 18 and the interesting orthoester 19 were isolated,
from the ARF of 11, as the two principal compounds. A
minor amount of 2,3,5-tri-O-acetyl-4-O-formyl-DD-arabi-
nonic acid (22) was also isolated and identified as its
methyl ester.13 Orthoester 19 was obtained as a single
stereoisomer and its structure determined by X-ray crys-
tallographic analysis.14

The formation of 18 could be rationalized by proposing
that the expected diiodobromo 16 is indeed initially
formed, but under the reaction conditions rapidly
undergoes an intermolecular iodo–bromo exchange
reaction.15 The orthoester 19 is formed very probably
from the debrominated molecules, presumably through
a transient intermediate acyl halide which undergoes a
neighboring group participation reaction by the C-2 ace-
tyl group.16 The oxocarbenium ion thus formed is subse-
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Scheme 2. Reagent and conditions: (a) (diacetoxyiodo)benzene (DIB)
(1.5 mmol), I2 (1 mmol), hm, reflux temperature, 1 h, 2,3,5-tri-O-acetyl-
4-O-formyl-DD-arabinonic acid (22) isolated and identified as its methyl
ester was also obtained (5% from 11 and 33% from 12).
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quently trapped by an acetate anion coming from the
(diacetoxyiodo)benzene. Similar results were observed
for the ARF of iodochlorohydrin 12 although not a
totally unexpected lower yield of trichloroalditol 20
was obtained (Scheme 2).

The effect of light on the stability of trihalocompounds
13–15 was also studied and the results are illustrated in
Scheme 3.17 A solution of the trihalocompound in
CDCl3 was added to an NMR tube and irradiated with
visible light (2 · 80 W tungsten-filament lamps), com-
plete consumption of starting material being observed
after 1 h (monitored by 1H NMR). Compounds 13 and
14 were totally transformed respectively into 21 and 18
through an iodo–bromo exchange reaction. In both cases
the debrominated compound was arabinonic acid deriv-
ative 2213 and the ratio between brominated and debro-
minated products was 1:1. An iodo–chloro exchange
reaction was observed during the photolysis of dichloro-
iodo 15 and the ratio of chlorinated to dechlorinated
compounds was also 1:1. It is worth noting that com-
pounds 13–15 seem to be more stable under the visible
light irradiation of the ARF reaction conditions than
under similar irradiation in the pure state. Although a
small percentage (8%) of photolytic decomposition prod-
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Scheme 3. Reagent and conditions: (a) CDCl3, hm (2 · 80 W tungsten-
filament lamps), 20–25 �C, 1 h.
uct 18 is obtained during the ARF of dibromohydrin 9
(Table 1, entry 2), compounds 13 and 15 survived the
irradiation of the ARF conditions without any detect-
able decomposition.

The results obtained in the photoexperiments outlined in
Scheme 3 strongly suggest that the photostability of the
mixed trihalo molecules decreases with increasing steric
bulkiness of the halogen atoms. Thus, the relative stabil-
ity order is R–CCl2I (15) > R–CBrClI (13) > R–CBr2I
(14) > R–CClI2 (17) > R–CBrI2 (16). The first three
were prepared and fully characterized using this proto-
col but the last two diiodo compounds were found to
decompose in situ via a halogen exchange reaction to
give, respectively, the more stable 1,1,1-trichloro 20
and 1,1,1-tribromo 18.
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